A New Topological Degree Theory for Densely Defined Quasibounded (s̃+)-perturbations of Multivalued Maximal Monotone Operators in Reflexive Banach Spaces
نویسندگان
چکیده
Let X be an infinite-dimensional real reflexive Banach space with dual space X∗ and G⊂ X open and bounded. Assume that X and X∗ are locally uniformly convex. Let T : X ⊃ D(T) → 2X be maximal monotone and C : X ⊃ D(C) → X∗ quasibounded and of type (S̃+). Assume that L ⊂ D(C), where L is a dense subspace of X , and 0 ∈ T(0). A new topological degree theory is introduced for the sum T +C. Browder’s degree theory has thus been extended to densely defined perturbations of maximal monotone operators while results of Browder and Hess have been extended to various classes of single-valued densely defined generalized pseudomonotone perturbationsC. Although the main results are of theoretical nature, possible applications of the new degree theory are given for several other theoretical problems in nonlinear functional analysis.
منابع مشابه
Implicit eigenvalue problems for maximal monotone operators
where T is a maximal monotone multi-valued operator and the operator C satisfies condition (S+) or (S̃+). In a regularization method by the duality operator, we use the degree theories of Kartsatos and Skrypnik upon conditions of C as well as Browder’s degree. There are two cases to consider: One is that C is demicontinuous and bounded with condition (S+); and the other is that C is quasibounded...
متن کاملOn the Eigenvalue Problem for Perturbed Nonlinear Maximal Monotone Operators in Reflexive Banach Spaces
Let X be a real reflexive Banach space with dual X∗ and G ⊂ X open and bounded and such that 0 ∈ G. Let T : X ⊃ D(T ) → 2X be maximal monotone with 0 ∈ D(T ) and 0 ∈ T (0), and C : X ⊃ D(C) → X∗ with 0 ∈ D(C) and C(0) = 0. A general and more unified eigenvalue theory is developed for the pair of operators (T,C). Further conditions are given for the existence of a pair (λ, x) ∈ (0,∞)× (D(T + C) ...
متن کاملEigenvalues of quasibounded maximal monotone operators
0 ∈ Tx + λCx, where T : D(T )⊂ X → 2X is a strongly quasibounded maximal monotone operator and C : D(C)⊂ X → X∗ satisfies the condition (S+)D(C) with L⊂ D(C). The method of approach is to use a topological degree theory for (S+)L-perturbations of strongly quasibounded maximal monotone operators, recently developed by Kartsatos and Quarcoo. Moreover, applying degree theory, a variant of the Fred...
متن کاملOn the surjectivity properties of perturbations of maximal monotone operators in non-reflexive Banach spaces
We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal monotonicity, in a nonreflexive space we characterize maximality using a “enlarged” version of the duality mapping, introduced previously by Gossez....
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کامل